Energy Dependence of Dielectron Production in Au+Au Collisions at RHIC

Jie Zhao

Aug.14 2014

Central China Normal University, Wuhan

Many thanks to:

Joey Butterworth, Xiangli Cui, Xin Dong, Frank Geurts, Yu-gang Ma, Yi Guo, Bingchu Huang, Patrick Huck, Kurt Jung, Olena Linnyk, Mustafa Mustafa, Ralf Rapp, Lijuan Ruan, Qun Wang, Wei Xie, Hao-jie Xu, Zhangbu Xu, Yifei Zhang

Outline

- > Motivation
- > Results from 200GeV Au+Au Collisions
- > Results from RHIC-Beam Energy Scan
- > Summary and Outlook

A Penetrating Probe to Medium

Advantages: EM probe / penetrating – not suffer strong interactions

(p_T, M) – additional mass dimension, sensitive to different dynamics

Challenges: Production rate is rare, over many background sources

integral over time, sensitive to system evolution

Motivation

STAR QM11

Provide two dimensions (mass vs p_T)

- √ mapping to the collisions dynamics
- √ higher mass, earlier production

> Low mass region (LMR):

in-medium modifications of vector mesons

chiral symmetry restoration

➤ Intermediate mass region (IMR):

thermal radiation expected to have significant contribution

dominated by charm in p+p, but the contribution is expected to be modified in Au+Au

➤ High mass region (HMR):

heavy quarkonia

Drell-Yan contribution

Motivation - vector meson

NA60, PRL 96 (2006) 162302, PRL 100 (2008) 022302

- > in-medium modifications of vector mesons
- > chiral symmetry restoration

 ρ life time(~1.3 fm/c) less than hadronic medium(~10 fm/c) - excellent tool

Motivation - thermal radiation

NA60, PRL 100, 022302 (2008)

STAR, NPA 757,102 (2005)

PHENIX, PRL 98, 232301 (2007)

Different slope in m_T spectra in low and intermediate mass at SPS energy

> "hint of partonic thermal dileptons"

$$q\bar{q} \rightarrow l\bar{l}$$

What about at RHIC energy?

> Experimental observables

- production cross section vs (mass, p_T)
- elliptic flow, polarization et al

RHIC

STAR detector

Time Projection Chamber (0<φ<2π, |η|<1)Tracking – momentum Ionization energy loss – dE/dx (particle identification)

Time Of Flight detector $(0<\phi<2\pi, |\eta|<0.9)$ Timing resolution <100ps - significant improvement for PID

Electron Identification

TOF velocity cut to remove slow hadrons

$$Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$$

➤ Clean electron PID with a combination of TPC dE/dx and TOF velocity

electron purity ~99% in pp, ~97% in AuAu MinBias.

hadron contamination contribution to the correlated background is small, and has been included in the systematic uncertainties (Au +Au).

Challenges

PHENIX, PRC 81 (2010) 034911;

STAR, PRL 113 (2014)022301;

≻Low S/B, ~ 1/200 in MinBias Au + Au collisions

Background Reconstruction

Like Sign:

$$\begin{aligned} 1: B_{\textit{LikeSign}} &= 2\sqrt{N_{++} \cdot N_{--}} \cdot \frac{B_{+-}^{\textit{Mix}}}{2 \cdot \sqrt{B_{++}^{\textit{Mix}} \cdot B_{--}^{\textit{Mix}}}} \\ 2: B_{\textit{LikeSign}} &= a(N_{++} + N_{--}) \cdot \frac{B_{+-}^{\textit{Mix}} \cdot B_{--}^{\textit{Mix}}}{(B_{++}^{\textit{Mix}} + B_{--}^{\textit{Mix}})b} \end{aligned} \qquad \text{Acceptance correction factor} \\ a &= \frac{\tilde{\int}_{0}^{2} 2 \cdot \sqrt{N_{++} \cdot N_{--}} \, dm dpT}{\tilde{\int}_{0}^{2} (N_{++} + N_{--}) \, dm dpT}} \cdot b = \frac{\tilde{\int}_{0}^{2} 2 \cdot \sqrt{B_{++}^{\textit{mix}} \cdot B_{--}^{\textit{mix}}} \, dm dpT}}{\tilde{\int}_{0}^{2} (N_{++} + N_{--}) \, dm dpT}} \end{aligned}$$

MixEvent:

normalize mixed likeSign ++ and -- to same event ++ and --

$$A_{+} = \frac{\int_{N.R.} N_{++} dm dp T}{\int_{N.R.} B_{++}^{Mix} dm dp T}, \qquad A_{-} = \frac{\int_{N.R.} N_{--} dm dp T}{\int_{N.R.} B_{--}^{Mix} dm dp T}$$

$$B_{++}^{mix} = \int_{0}^{\infty} A_{+} B_{++}^{mix} dm dp T, \qquad B_{--}^{mix} = \int_{0}^{\infty} A_{-} B_{--}^{mix} dm dp T$$

normalize mixed unlikeSign (combinatorial background)

$$B_{+-}^{combinatoital} = a \cdot \frac{2\sqrt{B_{++}^{mix} \cdot B_{--}^{mix}}}{\sum\limits_{0}^{\infty} B_{+-}^{mix} dm dp T} B_{+-}^{mix} \qquad (a = sum_{+-}/2\sqrt{sum_{++} \cdot sum_{--}}, \text{w/o normalization})$$

Compare to like-sign: enough statistics, no acceptance correction, but can't reproduce correlation background, e.g. cross pair etal.

Like-Sign Background

➤ Different acceptance between Like-Sign pairs and unLike-Sign pairs strong pT dependence slightly centrality dependence more obviously in PHENIX acceptance uncertainity: ~0.05%

Mix-Event Background

Results from RHIC Top Energy

STAR, PRL 113 (2014)022301;

Models show good agreement with data within uncertainty.

- Finhancement at ρ like region(0.30-0.76 GeV/c2): 1.77±0.11(stat,)±0.24(sys,)±0.41 (cocktail) in MinBias Collisions.
- >Compared with models based on ρ broadening:
- 1) Model I: by Rapp et al. effective many-body model. [R. Rapp, PoS CPOD2013, 008 (2013)]
- 2) Model II: microscopic transport model: Parton-Hadron-String -Dynamics (PHSD).

[O. Linnyk et al., Phys. Rev. C 85, 024910 (2012)]

Results from RHIC Top Energy

STAR, PRL 113 (2014)022301;

> ρ like region (A):

The enhancement shows weak dependence on centrality and pT.

> ω and φ region (B), (C): Cocktail can reproduce the yield

Results from RHIC Top Energy

1) excess in LMR (MinBias):

STAR, PRL 113 (2014)022301;

- Broadened ρ model explain can STAR data within uncertainties.
- > STAR measurements disfavor a pure vacuum ρ model in 0.3~1 GeV/c2

2) Npart dependence of excess yield:

- ω and φ region (B), (C):Yield shows Npart scaling.
- >ρ like region (A):
 Significant excess. Sensitive to the QCD media dynamics. A power fit shows:

Yield $\propto N_{part}^{1.54\pm0.18}$

Comparison on Low Mass Enhancement

PHENIX PRC 81 (2010) 034911; STAR QM11

Enhancement factor in 0.15<M_{ee}<0.75 Gev/c²

	Minbias (value \pm stat \pm sys)	Central (value \pm stat \pm sys)
STAR	$1.53 \pm 0.07 \pm 0.41$ (w/o ρ) $1.40 \pm 0.06 \pm 0.38$ (w/ ρ)	$1.72 \pm 0.10 \pm 0.50$ (w/o ρ) $1.54 \pm 0.09 \pm 0.45$ (w/ ρ)
PHENIX	$4.7 \pm 0.4 \pm 1.5$	7.6 \pm 0.5 \pm 1.3
Difference	2.0 σ	4.2 σ

Acceptance Effect

Beam Energy Scan at RHIC

NSAC Long Range Plan 2007

- 0) Turn-off of sQGP signatures
- 1) Search for the phase boundary
- 2) Search for the critical point

BES Phase-I

Year	√s _{NN} (GeV)	Events(10 ⁶)
2010	39	130
2011	27	70
2011	19.6	36
2014	14.5	22
2010	11.5	12
2010	7.7	5

Compared to SPS

- \succ π yield is from STAR π⁺⁻ measurement, other meson yields derived from SPS meson/π⁰ ratio.
- > Different centrality & acceptance
 - STAR Au+Au:

0-80% centrality

 $p_T > 0.2 \text{ GeV/c}, |\eta| < 1, |y_{ee}| < 1.$

- CERES Pb+Au:

0-28% centrality.

 $p_T > 0.2 \text{GeV/c}, 2.1 < \eta < 2.65, \theta_{ee} > 35 \text{mrad}$

> Different detector resolution.

Enhancement factor	0.2 <m<sub>ee<0.6 GeV/c²</m<sub>	
STAR	$1.9 \pm 0.6 \pm 0.4$	
CERES	$2.73 \pm 0.25 \pm 0.65 \pm 0.82$ [decays]	

Low mass enhancement comparable to CERES

Mee (GeV/c2)

Dielectrons from BES

STAR QM12

Enhancement in 0.3-0.75 GeV/c2 shows a slight decreasing vs. collision energy

- charm contribution increasing significantly with energy

Dielectron Production 19.6-200 GeV

STAR BES white paper

In-medium ρ broadening

R. Rapp: private communications

 \succ Model calculations by Rapp, based on in media broadening of ρ spectra function, expected to depend on total baryon density.

Dielectron Production 19.6-200 GeV

STAR BES white paper, QM14

- \succ in-medium modifications to ρ expected to depend on total baryon density
- > almost constant baryon density from 20-200GeV
- high-statistics BES-II

Possible Charm Modifications at IMR

- Central mass spectrum systematically steeper than minbias spectrum at IMR
 - indicative of either charm modifications or other sources (thermal radiation?)

Other Evidences of Charm Modifications

STAR QM12, arXiv:1404.6185

Au+Au→ D⁰ + X @ 200 GeV y10+y11 0-80% 0-10% He 0-80% - He 0-5% ---- Gossiaux 0-80% -- Gossiaux 0-10% 0.5 0 p_T (GeV/c)

arXiv: 1405.6348

- "bump" structure in low p_T D⁰ R_{AA}
- Finite non-photonic electron v_2 at low p_T , and R_{AA} mesurements

Significant charm-medium interactions in Au+Au collisions

Importance of Charm at High Energy Collisions

- > Correlated charm component is important in both IMR and LMR region in high energy HI collisions
- > Systematic measurements of energy dependence
 - onset of QGP thermal radiation

Measure Correlated Charms

HFT - topological separation of charm decay electrons from prompt MTD - unique measurement of e- μ correlation — clean to D-D correlation HFT+MTD help to measure the charm correlation directly.: D-D, e-D, μ -D, e- μ

Quantify Thermal Dilepton Properties

Thermal dileptons at IMR $(1.1 < M < 3. \text{ GeV/c}^2)$

(1) Polarization (angular distribution) to probe the degree of thermalization

$$d\sigma/d\cos\theta \simeq 1 + \alpha\cos^2\theta$$
 E. Shuryak, 1203.1012

Initial Drell-Yan, fully polarized
$$\alpha$$
=1 Completely thermalized, isotrop α =0

(2) Partonic or Hadronic thermal source – Elliptic flow

$$q\bar{q} \rightarrow l^+ l^ v_2(ll) = 2v_2(q)$$

$$\pi\pi \rightarrow l^+ l^ v_2(ll) = 2v_2(p) = 4v_2(q)$$

Cross section, v_2 , α (M, p_T)

At 2016, RHIC II projected L ~ 20 nb⁻¹ @ 200 GeV STAR recorded mb-equivalent events ~ 84 B (60%) assuming 100% triggering efficiency, 400 MeV/c² bin, σ_{v2} = 1%, σ_{α} = 5%

Summary and Outlook

>Low mass region:

- > Enhancement in Au + Au collisions compared to the cocktail
- > consistent with vector meson in-medium modification calculation

► Intermediate mass region:

> need more precise measurement to constrain charm and QGP thermal radiation contributions,

>RHIC (BES) - systematic measurements

- > LMR enhancement vs. total baryon density.
- > search the onset of sQGP thermal radiation and CP, need more statistics.

Outlook:

- > STAR Heavy Flavor Tracker and Muon Telescope Detector upgrades, charm contribution! (D meson, eµ ...)
 - > RHIC high luminosity and BES-II

BACKUP

Cocktail Comparison

Different generators with the same detector acceptance give consistent cocktails

- some small differences due to decay form factors and detector resolutions

Comparison on Low Mass Enhancement

PHENIX PRC 81 (2010) 034911; STAR QM11

Enhancement factor in 0.15<M_{ee}<0.75 Gev/c²

	Minbias (value \pm stat \pm sys)	Central (value \pm stat \pm sys)
STAR	$1.53 \pm 0.07 \pm 0.41$ (w/o ρ) $1.40 \pm 0.06 \pm 0.38$ (w/ ρ)	$1.72 \pm 0.10 \pm 0.50$ (w/o ρ) $1.54 \pm 0.09 \pm 0.45$ (w/ ρ)
PHENIX	4.7 \pm 0.4 \pm 1.5	7.6 \pm 0.5 \pm 1.3
Difference	2.0 σ	4.2 σ

Centrality / p_T dependence

PHENIX PRC 81 (2010) 034911; STAR QM12

Enhancement factor (data/cocktail):

- PHENIX: Large enhancement appears in low p_T and central collisions
- STAR: Mild centrality and p_T dependence

Hadron Blind Detector at PHENIX

- Goal: improve S/B by rejecting conversions and π⁰ Dalitz decays
- Installed to take data in p+p 200 GeV (2009) and Au+Au 200 GeV (2010)

Dielectron with HBD in Au+Au Collisions

Au+Au 200 GeV

PHENIX, QM12

Preliminary results report in 20-40%, 40-60%, 60-92% centrality bins

LMR enhancement with PHENIX HBD

HBD result in 20-92% centrality bins consistent with previous PHENIX result and also STAR preliminary result

- Looking forward to the HBD result in 0-20% centrality bin